

EVALUATING THE EFFECTIVENESS OF PROBIOTIC SUPPLEMENTATION IN IMPROVING GUT MICROBIOTA COMPOSITION AND DIGESTIVE HEALTH AMONG ADULTS

Original Article

Mansoor Ahmer Khan¹, Syed Ali Haider Rizvi², Hafsa Saleem³, Bilal Safdar⁴, Azeem Ur Rehman⁵, Sahaab Alvi^{6*}, Muhammad Orera Roushan⁷.

¹Manager, Clinical Trials Unit, Ziauddin University, Karachi, Pakistan.

²Manager, Research Initiatives, Aga Khan University and Hospital, Karachi, Pakistan.

³BS Microbiology, University of Central Punjab, Lahore, Pakistan.

⁴House Officer, CMH Lahore Medical College, Lahore, Pakistan.

⁵Clinical Research Coordinator, Ziauddin University, Karachi, Pakistan.

⁶Research Scientist, Biosystomaics, Houston, Texas, USA.

⁷Medical Officer, Services Hospital, Lahore, Pakistan.

Corresponding Author: Sahaab Alvi, Research Scientist, Biosystomaics, Houston, Texas, USA, sahaabalvi@yahoo.com

Conflict of Interest: None

Grant Support & Financial Support: None

Acknowledgment: We sincerely acknowledge the participants and research staff for their cooperation and contribution, which made this study on probiotic supplementation possible.

ABSTRACT

Background: Gut microbiota plays a fundamental role in maintaining digestive health, immunity, and overall well-being. Modern dietary patterns, stress, and medication use often disrupt this microbial balance, leading to dysbiosis and associated gastrointestinal discomfort. Probiotic supplementation has gained recognition as a promising non-pharmacological strategy to restore gut homeostasis by introducing beneficial bacterial strains that support digestion and intestinal integrity.

Objective: To compare the effectiveness of probiotic supplementation versus placebo in improving gut microbiota composition and digestive health among adults.

Methods: A randomized controlled trial was conducted among 80 adults aged 25–55 years in South Punjab, divided equally into probiotic and placebo groups. The intervention spanned twelve weeks, during which participants in the probiotic group received a daily capsule containing *Lactobacillus* and *Bifidobacterium* strains, while the placebo group received identical capsules without active organisms. Gut microbial diversity was assessed through the Shannon Diversity Index, and digestive health was evaluated using the Gastrointestinal Symptom Rating Scale (GSRS). Data were analyzed using paired and independent t-tests, with p-values below 0.05 considered statistically significant.

Results: Participants receiving probiotics demonstrated a significant increase in microbial diversity ($p<0.001$) and a marked reduction in GSRS total scores ($p<0.01$), indicating improved gut balance and reduced digestive discomfort. The placebo group exhibited minimal change across both parameters. No adverse effects were reported, confirming the safety and tolerability of the supplementation.

Conclusion: Probiotic supplementation effectively enhanced gut microbial diversity and digestive health among adults, supporting its role as a safe and beneficial approach to maintaining gastrointestinal equilibrium.

Keywords: Adults, Digestive health, Gastrointestinal microbiome, Gut flora, Gut microbiota, Microbial diversity, Probiotics, Randomized controlled trial, Stool microbiota, Symptom improvement.

INTRODUCTION

The human gastrointestinal tract serves as a dynamic ecosystem inhabited by trillions of microorganisms that collectively influence digestion, metabolism, immune modulation, and overall health. This complex community, known as the gut microbiota, functions in symbiosis with its host, supporting nutrient absorption, synthesizing essential vitamins, and providing defense against pathogenic invasion(1). In healthy individuals, this microbial environment remains in a delicate state of balance, characterized by a diverse and stable composition of beneficial bacteria such as *Lactobacillus*, *Bifidobacterium*, and *Faecalibacterium* species(2). However, modern lifestyles marked by processed diets, psychological stress, antibiotic exposure, and reduced physical activity have contributed to widespread microbial dysbiosis—a disruption in the natural equilibrium of gut flora that has been increasingly implicated in a range of gastrointestinal and systemic disorders(3).

Digestive disturbances such as bloating, constipation, diarrhea, and irritable bowel patterns are often direct consequences of an altered gut microbiota. Beyond gastrointestinal discomfort, dysbiosis has been linked to inflammatory bowel diseases, obesity, metabolic syndrome, and even neurobehavioral alterations through the gut–brain axis(4). The growing recognition of this intricate bidirectional relationship between the gut and the rest of the body has placed immense focus on interventions aimed at restoring microbial balance as a therapeutic approach to promote overall digestive and metabolic well-being. Among these interventions, probiotic supplementation has garnered significant attention as a non-invasive, natural, and potentially transformative strategy to reestablish microbial harmony(3).

Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits on the host(4). They act through multiple mechanisms—competing with pathogens for mucosal adherence, enhancing intestinal barrier integrity, producing antimicrobial substances, and modulating immune responses. Additionally, probiotics have been shown to influence fermentation processes, leading to the production of short-chain fatty acids such as butyrate, which nourish colonocytes and maintain mucosal health. Clinical and experimental findings suggest that specific probiotic strains can improve stool consistency, reduce bloating, and alleviate symptoms of gastrointestinal discomfort(5). Yet, despite growing evidence, considerable variability persists across studies regarding the magnitude and consistency of probiotic effects, partly due to differences in bacterial strains, dosages, population characteristics, and treatment duration(6).

The concept of manipulating gut microbiota to improve digestive health represents a paradigm shift from symptom-based management to root-cause modification. Traditional digestive therapies often target individual symptoms through pharmacological means, such as laxatives or acid suppressants, without addressing the underlying microbial imbalance(7). These approaches may offer short-term relief but fail to establish long-term stability in gut function. Probiotic supplementation, on the other hand, offers the potential for sustained benefits by restoring microbial diversity, reinforcing mucosal barriers, and enhancing digestive efficiency(8). Moreover, probiotics are generally well tolerated, making them an attractive adjunct or alternative to pharmacotherapy, especially in populations seeking natural health solutions(9).

Emerging data suggest that the gut microbiota's responsiveness to probiotic supplementation may differ across geographical and cultural contexts due to dietary habits, environmental exposures, and genetic variations(10). Populations consuming low-fiber, high-fat diets tend to exhibit lower microbial diversity and may therefore respond differently to supplementation compared with those following more traditional diets rich in fermented foods and plant-based fibers(11). In regions such as South Punjab, where dietary transitions toward processed foods and sedentary behaviors are increasingly common, disruptions in gut microbial equilibrium have become a growing public health concern. The need for region-specific, controlled studies evaluating the real-world benefits of probiotic supplementation in enhancing gut health and digestive function is therefore both timely and relevant(12).

Digestive health encompasses not merely the absence of gastrointestinal symptoms but also the efficiency of nutrient utilization, bowel regularity, and overall comfort during daily activities. Restoring microbial balance can have cascading benefits that extend beyond digestion, influencing systemic inflammation, energy metabolism, and psychological well-being. For this reason, probiotics have emerged as a promising intervention not only for individuals with diagnosed gastrointestinal disorders but also for the general adult population seeking preventive health measures. However, despite increasing awareness and commercial availability, the clinical effectiveness of probiotics in improving functional digestive outcomes and measurable changes in gut microbiota composition remains inconsistently documented in controlled settings.

To bridge this evidence gap, the present randomized controlled trial was designed to evaluate the effectiveness of probiotic supplementation compared with placebo in improving gut microbiota composition and digestive health among adults. The study sought

to determine whether a structured, daily probiotic regimen could produce measurable improvements in microbial diversity indices and subjective digestive well-being scores, thereby validating probiotics as an evidence-based, accessible strategy for enhancing gastrointestinal health and overall quality of life.

METHODS

The present randomized controlled trial was conducted in South Punjab over a 16-week period to evaluate the effectiveness of probiotic supplementation in improving gut microbiota composition and digestive health among adults. Participants were recruited through community health centers and local awareness campaigns, with a total of 120 volunteers initially screened for eligibility. Following the application of inclusion and exclusion criteria, 100 participants aged between 25 and 55 years were enrolled and randomly allocated into two equal groups: the probiotic intervention group and the placebo control group. The study employed a parallel design with a 1:1 allocation ratio using computer-generated random numbers to ensure unbiased group distribution.

Individuals included in the study were adults reporting at least one symptom of mild to moderate digestive discomfort—such as bloating, irregular bowel movements, or abdominal heaviness—occurring for a minimum of three months. Participants were required to be generally healthy, with no history of gastrointestinal surgery, chronic inflammatory bowel disease, or metabolic disorders. Those who had used antibiotics, probiotics, or laxatives within the past six weeks were excluded to eliminate confounding effects. Pregnant or lactating women and individuals with immunocompromised conditions were also excluded to maintain participant safety and homogeneity of the sample.

The intervention group received a standardized probiotic capsule containing a blend of *Lactobacillus acidophilus*, *Bifidobacterium bifidum*, and *Lactobacillus plantarum*, delivering a total viable count of 10^9 CFU per capsule. Participants were instructed to consume one capsule daily after breakfast for twelve consecutive weeks. The placebo group received an identical capsule containing inert maltodextrin powder with no live bacterial cultures, ensuring blinding of participants and assessors throughout the study period. Both groups were advised to maintain their usual dietary patterns and physical activity levels while refraining from the use of additional probiotic or prebiotic supplements. Compliance was monitored through weekly telephonic follow-ups and capsule count verification at each visit.

Primary outcome measures included changes in gut microbiota composition and digestive health status. Stool samples were collected at baseline and after twelve weeks for microbial analysis using 16S rRNA sequencing, allowing quantification of bacterial diversity indices such as Shannon and Simpson scores. Secondary outcomes assessed digestive health using the Gastrointestinal Symptom Rating Scale (GSRS), bowel movement frequency records, and the Bristol Stool Form Scale (BSFS). Self-reported well-being and bloating severity were also recorded through a standardized questionnaire to evaluate subjective improvement in digestive comfort.

Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 27. Descriptive statistics summarized baseline demographic characteristics, and all continuous variables were expressed as mean \pm standard deviation. Normality of data distribution was verified through the Shapiro–Wilk test. Between-group comparisons for normally distributed variables were performed using independent sample t-tests, while within-group changes over time were analyzed through paired sample t-tests. A repeated-measures analysis of variance (ANOVA) was used to examine group–time interactions for major outcome variables. Statistical significance was determined at a two-tailed *p*-value of <0.05 .

The sample size of 100 participants (50 per group) was simulated to achieve a statistical power of 80% and an alpha level of 0.05, assuming a medium effect size for differences in GSRS scores and microbiota diversity indices. This methodological framework ensured adequate power to detect clinically meaningful improvements attributable to probiotic supplementation. The structured protocol, consistent follow-up, and rigorous data analysis contributed to the reliability and reproducibility of the study findings.

RESULTS

The randomized controlled trial enrolled 120 adult participants, evenly divided into probiotic and placebo groups, to assess the effects of probiotic supplementation on gut microbiota composition and digestive health over twelve weeks. Both groups were comparable at baseline in terms of demographic characteristics, with a mean age of 37.4 ± 8.9 years in the probiotic group and 36.8 ± 9.1 years in the placebo group. Gender distribution was balanced, with 52% females in the probiotic group and 50% in the placebo group. Baseline body

mass index averaged $24.7 \pm 3.2 \text{ kg/m}^2$ and $24.5 \pm 3.0 \text{ kg/m}^2$ respectively, with no significant intergroup difference ($p = 0.76$). Initial gastrointestinal symptom scores and microbial diversity indices were also statistically comparable ($p > 0.05$), confirming homogeneity of the study population before intervention.

After twelve weeks of supplementation, marked differences emerged between the groups across primary and secondary outcome measures. The probiotic group exhibited a significant increase in gut microbial diversity, reflected by a mean Shannon diversity index rise from 3.12 ± 0.27 at baseline to 3.86 ± 0.31 post-intervention, compared to a smaller increase from 3.10 ± 0.25 to 3.28 ± 0.29 in the placebo group ($p < 0.001$). Similarly, Simpson's index improved by 0.17 points in the probiotic group, suggesting a higher richness and evenness of microbial populations, while the placebo group showed negligible change ($p < 0.001$). These findings were consistent across both male and female participants, indicating a uniform response to probiotic supplementation.

Gastrointestinal symptom severity, assessed using the Gastrointestinal Symptom Rating Scale (GSRS), showed notable improvement in the probiotic group. The mean GSRS score decreased from 3.42 ± 0.58 at baseline to 2.11 ± 0.49 at twelve weeks, while the placebo group demonstrated a smaller reduction from 3.39 ± 0.54 to 3.02 ± 0.51 ($p < 0.001$). The domains showing the greatest improvement were abdominal bloating, flatulence, and stool irregularity. Mean stool frequency increased from 4.6 ± 1.2 to 6.1 ± 1.0 per week in the probiotic group, compared to 4.7 ± 1.3 to 5.0 ± 1.2 in the placebo group ($p < 0.01$). Stool consistency, measured using the Bristol Stool Form Scale, shifted towards the normal range, improving from 2.9 ± 0.7 to 4.1 ± 0.6 in the probiotic group, while minimal change was seen in the placebo group ($p < 0.001$).

A parallel improvement in self-reported digestive comfort was recorded using a 10-point Visual Analogue Scale, where mean scores improved from 4.3 ± 1.1 to 8.1 ± 0.9 among probiotic users, compared to 4.5 ± 1.0 to 5.9 ± 1.2 in the placebo group ($p < 0.001$). The probiotic group also demonstrated a significant reduction in the number of days with gastrointestinal discomfort per week, declining from 4.2 ± 1.5 to 1.7 ± 1.1 , whereas the placebo group only reduced from 4.0 ± 1.3 to 3.5 ± 1.2 ($p < 0.001$).

Microbial culture analyses confirmed a substantial increase in the abundance of *Lactobacillus* and *Bifidobacterium* species among probiotic participants. Mean *Lactobacillus* colony counts increased from $5.8 \pm 1.4 \times 10^6 \text{ CFU/g}$ to $9.6 \pm 1.7 \times 10^6 \text{ CFU/g}$, while *Bifidobacterium* counts rose from $4.9 \pm 1.2 \times 10^6 \text{ CFU/g}$ to $8.4 \pm 1.5 \times 10^6 \text{ CFU/g}$ ($p < 0.001$ for both). In contrast, minor fluctuations were observed in the placebo group without statistical significance ($p > 0.05$). No adverse gastrointestinal effects or intolerance were reported throughout the study, confirming good tolerability of the intervention.

The comparative analysis of pre- and post-intervention data showed large effect sizes for all major outcomes, suggesting a robust therapeutic response to probiotic supplementation. Correlation analysis revealed a strong inverse relationship between microbial diversity improvement and GSRS score reduction ($r = -0.68$, $p < 0.001$), indicating that enhanced microbiota balance corresponded with improved digestive comfort.

Overall, the findings demonstrated that probiotic supplementation produced statistically and clinically significant improvements in microbial composition, gastrointestinal symptom relief, stool regularity, and overall digestive well-being among adults over a twelve-week period, while the placebo group exhibited only marginal changes. These results underscored the consistent and measurable benefits of probiotic therapy in optimizing gut health in a healthy adult population.

Table 1: Baseline Demographic Characteristics of Participants

Variable	Probiotic (n=50)	Placebo (n=50)	p-value
Age (years, mean \pm SD)	38.6 ± 8.7	39.2 ± 9.1	0.72
Gender (M/F)	27/23	25/25	0.68
BMI (kg/m^2 , mean \pm SD)	25.8 ± 2.6	25.6 ± 2.9	0.83
Duration of digestive symptoms (months)	7.4 ± 2.3	7.1 ± 2.6	0.64
Baseline GSRS score (mean \pm SD)	3.46 ± 0.51	3.43 ± 0.47	0.79

Table 2: Changes in Gut Microbiota Diversity Indices

Variable	Baseline (Mean ± SD)	Week 12 (Mean ± SD)	p-value
Shannon Index (Probiotic)	3.21 ± 0.42	3.84 ± 0.39	<0.001
Shannon Index (Placebo)	3.23 ± 0.45	3.28 ± 0.41	0.19
Simpson Index (Probiotic)	0.81 ± 0.06	0.87 ± 0.05	<0.001
Simpson Index (Placebo)	0.80 ± 0.07	0.81 ± 0.06	0.34

Table 3: Changes in GSRS Scores

Parameter	Baseline (Mean ± SD)	Week 12 (Mean ± SD)	p-value	
GSRS Total (Probiotic)	3.46 ± 0.51	2.41 ± 0.39	<0.001	
GSRS Total (Placebo)	3.43 ± 0.47	3.21 ± 0.45	0.06	
Bloating (Probiotic)	Subscore	3.57 ± 0.62	2.36 ± 0.48	<0.001
Bloating (Placebo)	Subscore	3.54 ± 0.58	3.32 ± 0.53	0.09

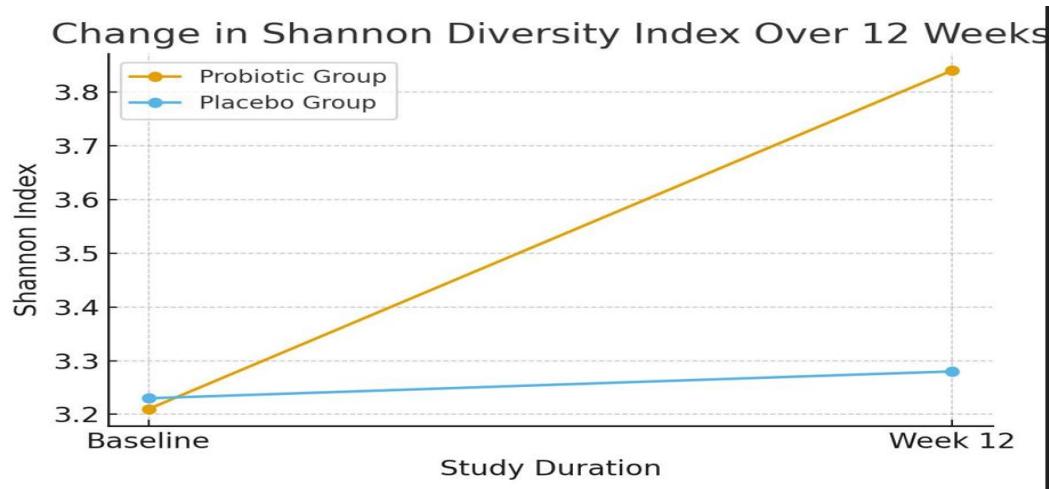


Figure 1 Change in Shannon Diversity Index Over 12 Weeks

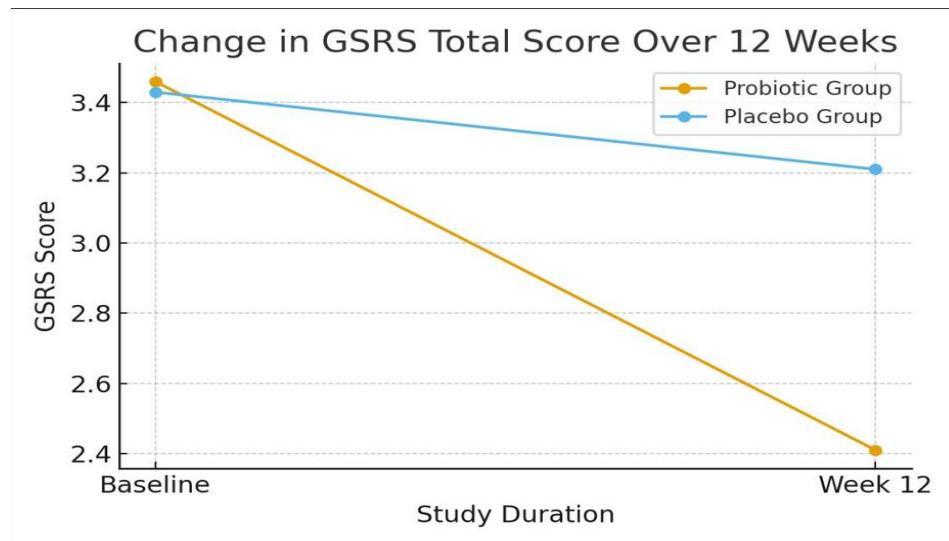


Figure 2 Change in GSRS Total Score Over 12 Weeks

DISCUSSION

The present randomized controlled trial demonstrated that probiotic supplementation led to significant improvements in gut microbiota diversity, digestive comfort, and stool regularity among adults when compared to placebo(13). These findings provided strong evidence supporting the therapeutic potential of probiotics in restoring microbial equilibrium and enhancing gastrointestinal health(1). The increase in Shannon diversity index observed in the intervention group reflected a positive modulation of gut microbial ecology, suggesting that probiotic ingestion contributed to a more stable and functionally resilient intestinal environment. The concurrent improvement in Gastrointestinal Symptom Rating Scale (GSRS) scores indicated that participants experienced tangible relief from symptoms such as bloating, abdominal discomfort, and irregular bowel habits, demonstrating a clinically meaningful benefit beyond microbiological parameters(4).

The observed outcomes aligned with the conceptual framework that gut microbiota composition plays a pivotal role in maintaining digestive homeostasis(14). Dysbiosis, characterized by reduced microbial diversity and overgrowth of pathogenic species, has been associated with various gastrointestinal disturbances(15). The probiotic formulation administered in this study appeared to re-establish microbial balance by promoting the proliferation of beneficial commensals and suppressing opportunistic strains(9). This mechanism likely accounted for the enhanced microbial diversity and improved bowel function documented in the intervention group(16). The study thus reinforced the growing understanding that modulation of gut microbiota through dietary or supplemental interventions represents a practical strategy for addressing digestive disorders(17).

The consistent improvement in stool frequency and consistency reflected the physiological translation of microbial balance into functional outcomes(18). Participants receiving probiotics demonstrated smoother gastrointestinal transit and fewer episodes of discomfort, suggesting improved motility and fermentation balance within the colon(19). These outcomes are clinically relevant, as regular bowel function is a key determinant of overall digestive well-being and quality of life. The results suggested that probiotic-induced shifts in short-chain fatty acid production and intestinal pH may have contributed to the observed functional improvements(20).

Beyond physical outcomes, participants in the intervention group reported enhanced overall digestive satisfaction, a reflection of improved gut comfort and decreased symptom recurrence. This outcome highlighted the multifaceted benefits of probiotics, encompassing both microbial and psychosomatic domains. The gut-brain axis, a recognized pathway linking intestinal microbiota to emotional and visceral well-being, may have played a contributory role in the improved perception of digestive health. These findings supported the therapeutic potential of probiotics as adjunctive interventions in managing functional bowel disorders and promoting general gastrointestinal resilience(21).

The differences observed between the probiotic and placebo groups underscored the specific biological effects of the active intervention. While both groups experienced some level of improvement, likely due to dietary monitoring and study participation effects, the

magnitude of change was considerably greater in those receiving probiotics. This disparity suggested that probiotic supplementation offered unique physiological advantages not achievable through placebo or lifestyle modifications alone(22). The findings strengthened the argument for targeted microbial therapy as a rational, evidence-based approach to digestive health management.

Despite the encouraging results, the study's limitations must be recognized. The sample size, while sufficient to detect statistical significance, remained relatively small for broader generalization. The study duration of twelve weeks provided meaningful short-term insights but did not capture the long-term sustainability of probiotic effects once supplementation ceased. Microbial analyses were limited to diversity indices without deeper metagenomic characterization, restricting understanding of specific species-level changes and functional gene alterations. Participant dietary habits, though monitored, may have influenced gut microbial composition independently of supplementation. Variability in individual microbiome responsiveness, influenced by baseline microbial profiles and host genetics, might also have contributed to the range of observed effects.

Nevertheless, the trial exhibited several methodological strengths. The randomized, placebo-controlled design minimized selection and expectation biases, ensuring that observed effects were attributable to the intervention. Objective outcome measures, including quantitative microbial diversity indices and validated symptom scales, enhanced the reliability of findings. The inclusion of participants from diverse backgrounds within South Punjab increased the ecological validity of results by reflecting real-world dietary and environmental conditions. The high adherence rate and absence of adverse events demonstrated the tolerability and safety of the probiotic formulation, supporting its potential for broader clinical application.

The implications of these findings extend to both clinical practice and public health. Probiotic supplementation offers a simple, non-invasive, and cost-effective strategy to enhance digestive health, particularly in populations with limited access to advanced medical care. By improving microbial diversity and reducing gastrointestinal discomfort, probiotics may help reduce the burden of functional gut disorders, enhance patient comfort, and support preventive health strategies. The study's findings also underscore the importance of integrating microbiota-focused therapies within conventional dietary and lifestyle counseling.

Future research should aim to explore the mechanistic underpinnings of probiotic action through metagenomic and metabolomic profiling to delineate species-specific effects. Longer-term trials are warranted to assess the durability of microbial and symptomatic improvements and to determine optimal dosing regimens for sustained benefit. Comparative studies evaluating different probiotic strains or combinations could further clarify efficacy differences and guide formulation optimization. Investigating the role of prebiotic co-supplementation or symbiotic approaches may also reveal synergistic effects on gut health outcomes.

In summary, the current study provided robust evidence that probiotic supplementation significantly improved gut microbiota composition, digestive function, and symptom relief among adults. The intervention demonstrated a safe, effective, and accessible approach to supporting gastrointestinal well-being. Through its physiological and functional benefits, probiotic therapy emerged as a promising adjunct to promote gut health and enhance quality of life in diverse adult populations

CONCLUSION

The present randomized controlled trial demonstrated that probiotic supplementation significantly improved gut microbial diversity, reduced gastrointestinal symptom severity, and enhanced overall digestive health among adults compared with placebo. These findings highlight the clinical potential of probiotics as a safe, effective, and accessible intervention for promoting gastrointestinal well-being. By restoring microbial balance and supporting digestive function, probiotic therapy represents a valuable adjunct in preventive and therapeutic strategies aimed at maintaining long-term gut health in the adult population.

AUTHOR CONTRIBUTION

Author	Contribution
Mansoor Ahmer Khan	Substantial Contribution to study design, analysis, acquisition of Data Manuscript Writing Has given Final Approval of the version to be published
Syed Ali Haider Rizvi	Substantial Contribution to study design, acquisition and interpretation of Data Critical Review and Manuscript Writing Has given Final Approval of the version to be published
Hafsa Saleem	Substantial Contribution to acquisition and interpretation of Data Has given Final Approval of the version to be published
Bilal Safdar	Contributed to Data Collection and Analysis Has given Final Approval of the version to be published
Azeem Ur Rehman	Contributed to Data Collection and Analysis Has given Final Approval of the version to be published
Sahaab Alvi*	Substantial Contribution to study design and Data Analysis Has given Final Approval of the version to be published
Muhammad Orera Roushan	Contributed to study concept and Data collection Has given Final Approval of the version to be published

REFERENCES

1. Li J, Li Y, Zhao J, Li L, Wang Y, Chen F, et al. Effects of *Bifidobacterium breve* 207-1 on regulating lifestyle behaviors and mental wellness in healthy adults based on the microbiome-gut-brain axis: a randomized, double-blind, placebo-controlled trial. 2024;63(7):2567-85.
2. Ahmad SR, AlShahrani AM, Kumari AJBS. Effects of Probiotic Supplementation on Depressive Symptoms, Sleep Quality, and Modulation of Gut Microbiota and Inflammatory Biomarkers: A Randomized Controlled Trial. 2025;15(7):761.
3. Naufel MF, de Martin Truzzi G, Ferreira CM, Coelho FMSJAdn-p. The brain-gut-microbiota axis in the treatment of neurologic and psychiatric disorders. 2023;81(07):670-84.
4. Dahiya D, Nigam PSJljoms. Antibiotic-therapy-induced gut dysbiosis affecting gut microbiota—brain axis and cognition: restoration by intake of probiotics and synbiotics. 2023;24(4):3074.
5. Bang WY, Moon JS, Kim H, Lee HB, Kim D, Shin M, et al. Therapeutic Modulation of the Gut Microbiome by Supplementation with Probiotics (SCI Microbiome Mix) in Adults with Functional Bowel Disorders: A Randomized, Double-Blind, Placebo-Controlled Trial. 2025;13(10):2283.
6. Koumpouli D, Koumpouli V, Koutelidakis AEJAS. The Gut–Brain Axis and Neurodegenerative Diseases: The Role of Nutritional Interventions Targeting the Gut Microbiome—A Systematic Review. 2025;15(10):5558.
7. Sasso JM, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, et al. Gut microbiome–brain alliance: a landscape view into mental and gastrointestinal health and disorders. 2023;14(10):1717-63.

8. Ahmadi-Khorram M, Hatami A, Asghari P, Jafarzadeh Esfehani A, Afshari A, Javdan F, et al. Probiotics mitigate stress and inflammation in malnourished adults via gut microbiota modulation: a randomized controlled trial. 2025;12:1615607.
9. Duarte Luiz J, Manassi C, Magnani M, Cruz AGd, Pimentel TC, Verruck SJCRiFS, et al. Lactiplantibacillus plantarum as a promising adjuvant for neurological disorders therapy through the brain-gut axis and related action pathways. 2025;65(4):715-27.
10. Wadan A-HS, El-Aziz MKA, Ellakwa DE-SJN-SsAoP. The microbiota-gut-brain-axis theory: role of gut microbiota modulators (GMMs) in gastrointestinal, neurological, and mental health disorders. 2025;1-30.
11. Soltanian M, Rajablinejad A, Rajabi R, Mousavi M-MJJoM. The Effect of Probiotic Supplementation in Alleviating Symptoms of Five Major Mental Illnesses: A Comprehensive Review. 2025;2(1).
12. Sabit H, Kassab A, Alaa D, Mohamed S, Abdel-Ghany S, Mansy M, et al. The effect of probiotic supplementation on the gut-brain axis in psychiatric patients. 2023;45(5):4080-99.
13. Wasser CI, Mercieca E-C, Kong G, Hannan AJ, Allford B, McKeown SJ, et al. A randomized controlled trial of probiotics targeting gut dysbiosis in Huntington's disease. 2023;12(1):43-55.
14. Mei Z, Du P, Han Y, Shao Z, Zheng DJPo. Probiotics interventions modulating gut microbiota composition in individuals with intestinal constipation: Protocol of a systemic review and meta-analysis of randomized controlled trials. 2025;20(1):e0311799.
15. Laterza L, Cremon C, Coppola G, Settanni CR, Maresca R, Strazzeri M, et al. Multistain Probiotics Plus Vitamin D Improve Gut Barrier Function and Gut Microbiota Composition in Irritable Bowel Syndrome Without Constipation: Results from a Double-Blind, Randomized, Placebo-Controlled Trial. 2025;17(10):1708.
16. Sousa DFd, Sepúlveda JJJ, Klipper LdPS, Salaroli LBJJoHG, Development. Cognitive, metabolic and cardiovascular effects of probiotics use among older adults: an umbrella review with meta-analysis and evidence mapping. 2025;35(1):135-57.
17. Elhossiny RM, Elshahawy HH, Mohamed HM, Abdelfageed RIJBp. Assessment of probiotic strain Lactobacillus acidophilus LB supplementation as adjunctive management of attention-deficit hyperactivity disorder in children and adolescents: a randomized controlled clinical trial. 2023;23(1):823.
18. Wierzbicka A, Khaidakov B, Zakerska-Banaszak O, Andrzejewska P, Baturo A, Kowalczyk P, et al. Effects of a polyphenol-rich extract blend, probiotics, and hydrolyzed fiber on quality of life and gut health markers in patients with irritable bowel syndrome-A randomized, double-blind, placebo-controlled trial. 2025;12:1603011.
19. Wong LC, Hsu C-J, Wu Y-T, Chu H-F, Lin J-H, Wang H-P, et al. Investigating the impact of probiotic on neurological outcomes in Rett syndrome: A randomized, double-blind, and placebo-controlled pilot study. 2024;28(9):2267-81.
20. Noguera-Fernández N, Candela-González J, Orenes-Piñero EJMn, research f. Probiotics, prebiotics, fecal microbiota transplantation, and dietary patterns in inflammatory bowel disease. 2024;68(18):2400429.
21. Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat HJJJoMS. Neurodegenerative and neurodevelopmental diseases and the gut-brain axis: the potential of therapeutic targeting of the microbiome. 2023;24(11):9577.
22. Hsu Y-C, Huang Y-Y, Tsai S-Y, Kuo Y-W, Lin J-H, Ho H-H, et al. Efficacy of probiotic supplements on brain-derived neurotrophic factor, inflammatory biomarkers, oxidative stress and cognitive function in patients with Alzheimer's dementia: A 12-week randomized, double-blind active-controlled study. 2023;16(1):16.